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Abstract

Functions describing simple models for solid-state reaction kinetics under isothermal conditions were transformed in order

to obtain new functions with improved properties suitable for kinetic analysis. The transformations were performed trough

multiplying well known functions as Johnson–Mehl–Avrami or Jander’s with assisting functions. In such manner, new

functions, F, were obtained enabling calculation of kinetic parameters in a simple way.

The relationships between the values of the extremes of F functions and various kinetic parameters have been established.

The calculation of kinetic parameters by application of new equations have been demonstrated on six model systems. Very

good agreement between preset and calculated parameters for each model system has been observed.

Using the same approach, the rate-determining step, i.e. the reaction model, and proper kinetic equation could also be

determined. # 2002 Elsevier Science B.V. All rights reserved.

Keywords: Activation energy; Isothermal conditions; Kinetic functions; Rate constants; Solid-state reactions

1. Introduction

One of the purposes of kinetic studies is to find the

most probable course of reaction; in other words, to

obtain insight into a reaction mechanism. It is usual to

postulate a model for reaction, which depends on the

rate-determining step. The models which have been

proposed for solid-state reactions can be divided into

three major groups: (a) diffusion models, D [1–3], (b)

phase boundary models, PB [4,5] and (c) nucleation

and growth models, NG [6–14]. When a model is

postulated the next goal is to determine the kinetic

parameters, which is most often done by analytical

methods. At present, indebted to readily available

computation power, the numerical methods are often

employed [15–17].

However, the functions that describe any model

might be transformed, in order to obtain new functions

with improved properties suitable for kinetic analysis.

Such new approach is elaborated in this work. It may

also be useful in those cases where standard, unmo-

dified functions are readily applicable.

2. Theoretical

The functions supposed to describe mathematically

experimental kinetic curves can be divided in two
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major groups: integral and differential functions. For

instance, the phase boundary model is often described

with the integral equation [4]

gðaÞ ¼ 1 � ð1 � aÞ1=3 ¼ kt (1)

or explicitly

gðtÞ ¼ 1 � ð1 � ktÞ3 ¼ a (2)

where a is the volume fraction transformed, k the rate

constant and t is the time.

In differential form, the same equation reads as

f ðaÞ ¼ da
dt

¼ 3kð1 � aÞ2=3
(3)

or

f ðtÞ ¼ da
dt

¼ 3kð1 � ktÞ2
(4)

The selection of mathematical form (integral or dif-

ferential) usually depends on experimental data

obtained. For instance, if X-ray diffraction is used

in order to study transformation kinetics, the a� t

dependence, typical for integral form, is obtained. On

the other hand, the employment of differential scan-

ning calorimetry results with differential (da/dtÞ � t

dependence.

2.1. The definitions of the new functions, F

Regardless of form, any function F, that is supposed

to describe any model for solid-state reaction kinetics,

could be transformed. The goal of such treatment is to

obtain the functions F, with improved properties,

favorable for kinetic analysis. For instance, function

F could be multiplied with any other function, i.e.

assisting function, j.

F ¼ Fj: (5)

In such manner, new function F, is obtained having

new properties and being completely different from F

function, but influenced by functions F and j. If the

function j is suitably chosen it is possible to obtain

such form of function F that enables easier determina-

tion of kinetic parameters; if the experimentally

obtained curve obeys particular function, its trans-

formed form will enable calculation of kinetic para-

meters in a simple manner. Moreover, using the same

approach, the rate-determining step, i.e. the reaction

model, and proper kinetic equation could also be

determined.

The j function could have various forms. Form that

enables obtaining of F function with predicted char-

acteristics has to be selected. In this work, the j
function has been selected in order to obtain the F
function that has maximal value in the range of

interest, regardless weather the function F has extreme

in that range. For instance, the differential function

describing the nucleation and growth process has an

extreme, while the functions for the processes limited

by diffusion or reaction at the interface are mono-

tonously decreasing ones. Simple function, j ¼ tm

(where m has to be restricted depending on function

F), that fulfil such criteria, is selected.

Let us consider, how the function j ¼ tm influence

to the properties of some, well known differential or

integral forms of functions for nucleation and growth,

phase boundary and diffusion limited models.

2.2. Differential functions

The differential form of Johnson–Mehl–Avrami

equation, the most often used to describe nucleation

and growth mechanism, reads as

F ¼ f ðtÞ ¼ nkntn�1 exp½�ðktÞn� (6)

where n is the Avrami exponent.

With j ¼ tm, the F function reads as

Fðt;mÞ ¼ nkntmþn�1 exp½�ðktÞn� (7)

The function F has its maximum at t ¼ tpðmÞ which

depends on m, k and n. For dF/dt ¼ 0, one obtains

(Appendix A)

ktpðmÞ ¼ m þ n � 1

n

� �1=n

(8)

where m > ð1 � nÞ.
The differential form of equation describing phase

boundary model reads as

F ¼ f ðtÞ ¼ nkð1 � ktÞn�1
(9)

where n ¼ 3 for three-dimensional process and n ¼ 2

for two-dimensional process.

In this case, with j ¼ tm, we have the following F
function:

Fðt;mÞ ¼ nktmð1 � ktÞn�1
(10)
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which has its maxima at

ktpðmÞ ¼ m

m þ n � 1

� �
(11)

where m > 0.

The differential form of Jander equation describing

the diffusion mechanism reads as

F ¼ f ðtÞ ¼ 3

2

k½1 � ðktÞ1=2�2

ðktÞ1=2
(12)

with j ¼ tm the F function will be

Fðt;mÞ ¼ 3

2
ktm ½1 � ðktÞ1=2�2

ðktÞ1=2
(13)

having its maxima at

ktpðmÞ ¼ 2m � 1

2m þ 1

� �2

(14)

where m > 0:5.

In such manner, the functions F(t, m) that have

maxima defined by process (function F), kinetic para-

meters (rate constant and dimensionless constants)

and selected m constant (in j function), are obtained.

Although the original functions, F, for diffusion and

phase boundary limited process (Eqs. (9) and (12))

have no maxima for t > 0, each F(t, m) function has

its maximum, tp(m), according to the Eqs. (11) and

(14). The computer-generated curves of the above F
functions, with various m values, are shown in Fig. 1.

2.3. Integral functions

a� t dependence are described by integral func-

tions. For the majority of the integral functions in

explicit form, the application of the function j ¼ tm

would not be of use because multiplication of explicit

form of integral equations (e.g. Eq. (2)), with j ¼ tm

gave F functions without maxima. However, if the

functions F are defined as F ¼ ð1 � aÞ, the functions

F ¼ Fj, where j ¼ tm will have maxima. The influ-

ence of function j ¼ tm on integral form of previously

reviewed functions is given as follows.

The integral form of Johnson–Mehl–Avrami equa-

tion [9] reads as

F ¼ gðtÞ ¼ ð1 � aÞ ¼ exp½�ðktÞn� (15)

with j ¼ tm, the proper F function is obtained:

Fðt;mÞ ¼ ð1 � aÞtm ¼ tm exp½�ðktÞn� (16)

The function F has its maxima at t ¼ tpðmÞ which

depends on m, k and n. For dF/dt ¼ 0:

ktpðmÞ ¼ m

n

� �1=n

(17)

where m > 0.

Fig. 1. Model systems curves simulated upon kinetic models and

parameters shown in Table 1, and their normalized F curves

obtained by multiplying simulated data with tm (m ¼ 0–4): (a)

model system S1; (b) model system S2; (c) model system S3.
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The integral form of equation describing phase

boundary model [4] reads as

F ¼ gðtÞ ¼ ð1 � aÞ ¼ ð1 � ktÞn
(18)

with n ¼ 3 for three-dimensional process and n ¼ 2

for two-dimensional process.

By applying j ¼ tm, the F function will be

Fðt;mÞ ¼ ð1 � aÞtm ¼ tmð1 � ktÞn
(19)

having its maximum at

ktpðmÞ ¼ m

m þ n

� �
(20)

where m > 0.

The integral form of Jander equation [1] is

F ¼ gðtÞ ¼ ð1 � aÞ ¼ ½1 � ðktÞ1=2�3 (21)

Using of j ¼ tm will give F function:

FðtÞ ¼ ð1 � aÞtm ¼ tm½1 � ðktÞ1=2�3 (22)

with maxima at

ktpðmÞ ¼ 2m

2m þ 3

� �2

(23)

where m > 0.

The computer-generated curves of the above F
functions, with various m values, are shown in Fig. 2.

The derived equations enable the calculation of the

rate constants and dimensionless constants. The tp for

the curves obtained with various m values have to be

calculated first. From the obtained sets of m � tp data,

mentioned kinetic parameters are obtained through

simple relationships.

2.4. The Arrhenius equation

From Eqs. (8), (11), (14), (17), (20) and (23), it

could be seen that the expressions for extreme of the

function F have the same, characteristic form

ktpðmÞ ¼ C (24)

Eq. (24) is satisfied if F is given explicitly, i.e. if

F ¼ ðda/dtÞ ¼ f ðtÞ or F ¼ ð1 � aÞ ¼ 1 � gðtÞ. Con-

stant C depends on functions that describe process,

and on parameters m and n (NG and PB), but does

not depend on temperature. The equation for iso-

thermal processes at different temperatures could be

expressed as

kðTÞtpðT;mÞ ¼ C (25)

By introducing Arrhenius equation to Eq. (25), the

relation is obtained

k0tpðT ;mÞ exp � E

RT

� �
¼ C (26)

Fig. 2. Model systems curves simulated upon kinetic models and

parameters shown in Table 1, and their normalized F curves

obtained by multiplying simulated data with tm (m ¼ 0–4): (a)

model system S4; (b) model system S5; (c) model system S6.
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which is in logarithm form suitable for calculation of

the activation energy

ln½tpðT ;mÞ� ¼ C� þ E

RT
(27)

Similar equation is given by Kemeny and Šestak [18],

but only for JMA function.

The advantage of using Eq. (27) instead of stan-

dard procedure for calculation of activation energy

through rate constants lays in fact that it is not

necessary to know which process is rate limiting

for the reaction in the solid-state. The determination

of tp(T, m), i.e. the maxima of F function for various

temperatures and the same m value provides all the

necessary data for activation energy calculation. Use

of any m should give the same linear relationship, i.e.

straight lines with the same slope. In the case of

application on experimental data, it is necessary to

include the standard regression analysis, as well as

test for parallelism. If the straight lines have not the

same slope, function F is more complex than it has

been assumed. The procedure is similar to the situa-

tion in isoconversional method recommended by

Šestak and Malek [19].

2.5. The functions for discerning the rate-

determining step

Equations given in Sections 2.2 and 2.3 usually

serve for the calculation of kinetic parameters, under

assumption that the applied kinetic model is correctly

proposed. If the reaction mechanism is not previously

known or determined, the experimental data have to be

tested, in order to discern the rate-determining step,

i.e. the reaction model and proper kinetic equation.

The equations for this testing are more complicated

than those in Sections 2.2 and 2.3. They are derived for

analysis of differential forms of kinetic functions only,

with an aim to select the rate-determining process by

evaluation of characteristic parameters. The general

form of these equations is

F ¼ da
dt

¼ H
p
1H

q
2 (28)

where H1 and H2 are functions of a or t, and p and q

characteristic parameters.

Function F can be transformed as shown in Sec-

tions 2.2–2.4. Two different functions will be treated

in this work. They are

F ¼ ð1 � aÞp½�ln ð1 � aÞ�q (29)

F ¼ ð1 � aÞp½1 � ð1 � aÞ1=3�q (30)

Function F (Eq. (29); identical as in Appendix B) has

been used most frequently for testing of experimental

data. When experimental data obey JMA function

(Eq. (15)) p ¼ 1 and q < 1 will satisfy the equation.

If q ¼ 0 and p ¼ 1/2 or 2/3, experimental data will

obey phase boundary models (Eq. (18)). Eq. (30) can

be decisive in the selection between chemical reaction

on the interface with q ¼ 0 and p ¼ 1/2 or 2/3 and

diffusion with q ¼ �1 and p ¼ 2/3 (Jander’s equa-

tion), or with q ¼ �1 and p ¼ 1/3 (Ginstling and

Brounstein’s equation).

Any deviation from the above values for parameters

q and p calls for caution in the determination of the

rate-determining processes. In this case, the proper

kinetic equation is probably more complex than the

equations treated in this work. In Eqs. (28)–(30), F

depends on a. Therefore, it will be convenient to

operate with assisting function which also depends

on a, i.e. with j ¼ am. The assisting function j ¼ am

may be useful for application in analysis of the three

considered processes (NG, PB and D), because it gives

the corresponding F functions with the extremes that

depend on m.

Eq. (28) can also be transformed like all the other

functions from Sections 2.2 and 2.3; testing functions

can be multiplied by the assisting function in order to

determine maxima of F functions dF/da ¼ 0. This

treatment gives new characteristic functions which are

in fact linearized testing functions. Their general

forms reads (Appendix C) as

Y ¼ pX1 þ qX2 (31)

Consequently, the parameters p and q will be obtained

by the multiple linear regression. By using j ¼ am, the

transformed form of Eq. (29) is

X1 ¼ apðmÞ½�lnð1 � apðmÞÞ� (32)

X2 ¼ �apðmÞ (33)

Y ¼ mð1 � apðmÞÞ½�lnð1 � apðmÞÞ� (34)

whilst for Eq. (30) one obtains

X1 ¼ �apðmÞ½1 � ð1 � apðmÞÞ1=3� (35)
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X2 ¼ � 1
3
½1 � apðmÞ�1=3

(36)

Y ¼ m½1 � apðmÞ�½1 � ð1 � apðmÞÞ1=3� (37)

Thus, by applying the proper assisting function, the

characteristic equation can be derived for any testing

function.

3. Results and discussion

With the purpose of testing, the validity of proposed

method for the determination of kinetic parameters,

the model systems named S1 to S6 were formed. The

kinetic models and kinetic parameters used for creat-

ing model systems are shown in Table 1. Using

functions and parameters presented in Table 1, sets

of da/dt � t (Fig. 1, m ¼ 0) and ð1 � aÞ � t (Fig. 2,

m ¼ 0) data were generated.

The function tm was taken as j function, the m

values used for calculation are given in Table 2. The F
curves were obtained by multiplying data columns,

da/dt or 1 � a, with mth powered t columns. This

procedure was performed trough self-designed com-

puter routine, but it could be performed with any

spreadsheet computer application. The normalized

F curves (Fmax ¼ 1) for m ¼ 1–4 are presented in

Figs. 1 and 2 and tp values for curves obtained using

various m values are shown in Table 2.

The rate constant and Avrami exponent for model

system S1 were calculated as follows: if the m in

Eq. (8) is chosen to be 1, the equation reads as

ktpðm ¼ 1Þ ¼ 1 (38)

Table 1

Kinetic models and parameters used for creating of model systems

Model system Kinetic model Mathematical form Equation number Parameters

k (min�1) n

S1 Nucleation and growth Differential (6) 0.024 2

S2 Phase boundary (9) 0.01 3

S3 Diffusion limited (12) 0.0064 –

S4 Nucleation and growth Integral (15) 0.024 2

S5 Phase boundary (18) 0.008 3

S6 Diffusion limited (21) 0.008 –

Table 2

Obtained tp values (in minutes) for model systems and F curves, calculated rate and dimensionless constants

m Model system

S1 S2 S3 S4 S5 S6

0 29 0 0 0 0 0

1 42 34 17.5 29 31 20

1.25 44.5 37.5 29.5 33 36.5 25.5

1.5 46.5 42 39 36 42 31

1.75 49 46 48.5 39 46 36

2 51 50 54 41.5 50.5 41

2.5 55.5 56 68.5 46.5 56.5 49

3 59.5 60 80.5 51 62.5 56

3.5 62.5 64 89 55 67 62.5

4 65.5 66 95 59 71 65.5

k (min�1) 0.0238 0.0101 0.0064 0.024 0.0079 0.0080

n 2.0 3.0 – 2.0 3.1 –
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which means that for m ¼ 1, the tp, instead on k and n,

depends only on k (it is worth noting that for m ¼ 1

ap ¼ 0:632). Therefore, rate constant for model sys-

tem S1 was calculated using tpðm ¼ 1Þ only (Table 2).

By division of Eq. (38) (m ¼ 1) with Eq. (8) for m ¼ 0,

the following relation is obtained:

tpð0Þ
tpð1Þ

¼ n � 1

n

� �1=n

(39)

By using measured tp(0) (the experimental peak max-

ima) and calculated tp(1) the Avrami exponent for

model system S1 has been determined trough simple

iteration procedure (Table 2).

For model system S2, according to Eq. (11), a linear

dependence 1/tp(m) versus 1/m was obtained, and the

rate constant was calculated from the intercept. With

known k, the process geometry was calculated from

the slope (Table 2).

For model system S3, according to Eq. (14), a linear

dependence tp(m) versus ½ð2m � 1Þ=ð2m þ 1Þ�2 was

obtained. The rate constant were calculated from the

slope and presented in Table 2.

It could be shown from Eq. (17) that

ln
m1

m2

¼ n ln
tpðm1Þ
tpðm2Þ

(40)

Using Eq. (40), the Avrami exponent for model system

S4 was calculated; with the known Avrami exponent

the rate constant was obtained from Eq. (17). The

calculated values are shown in Table 2.

According to Eq. (20), a linear dependence 1/tp(m)

versus 1/m was obtained for model system S5, and the

rate constant was calculated from the intercept. With

the known k, the geometry constant was calculated

from the slope (Table 2).

According to Eq. (23), a linear dependence tp(m)

versus ½2m=ð2m þ 3Þ�2 was obtained for model system

S6 and the rate constant was calculated from line

slope. The calculated rate constant is shown in Table 2.

As can be seen from Table 2, very good agreement

between preset and calculated parameters is observed

for each model system.

The rate of volume fraction transformed for model

system S1 is computed for a different temperatures, with

Fig. 3. Plots of ln tp(m) vs. 1/T for the curves of model system S1 computed for various temperatures.
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Ea ¼ 200 kJ mol�1, n ¼ 2 and k0 ¼ 1:31	 108 min�1.

The temperatures and the obtained tp(T, m) values for

m ¼ 0–3arepresented inTable3.According toEq. (27),

linear dependences ln tp(T, m) versus 1/T, were obtained

(Fig. 3) and activation energies were calculated from

each slope (Table 3). As can be seen from Table 3, very

close values for activation energies and a match with

preset Ea were obtained, and good agreement between

preset and calculated parameters is observed for each

model system.

The testing of rate-determining step is performed by

multiplying the previously described S1 to S3 curves

with j ¼ am for different m values (Table 4). Accord-

ing to Eqs. (29) and (30), p and q were obtained by

multiple linear regression. In Table 5, the results of

testing are shown. The obtained p and q values clearly

point out to the proper kinetic functions.

Table 4

The ap values obtained for model systems S1 to S3 using function

j ¼ am

m S1 S2a S3a

�0.4 0.114

�0.25 0.283

0 0.396

0.25 0.488 0.271

0.5 0.567 0.428

0.75 0.525 0.150

1 0.657 0.603 0.156

1.25 0.65 0.22

1.5 0.715 0.692 0.362

1.75 0.725 0.448

2 0.759 0.75 0.527

2.5 0.792 0.789 0.617

3 0.816 0.82 0.697

4 0.781

5 0.825

a Curve S2 has no maxima for m < 0 and S3 for m < 0:5.

Table 5

The results of rate-determining step testing using two different

models

Curve

S1 S2 S2 S3

Eq. (29) Eq.(30)

p 0.96 0.66 0.66 0.65

q 0.47 �0.01 �0.01 �0.96

S.D. 	 102 0.972 0.337 0.311 0.089

pa 1.00 0.67 0.67 0.67

qa 0.50 0 0 �1.00

a Preset parameters.

Table 6

Equations for calculations of the kinetic parameters through ap

Kinetic model Mathematical form Equation Condition Derived from

Nucleation and growth Differential �ln½1 � apðmÞ� ¼ m þ n � 1

n
m > (1 � n) Eqs. (8) and (15)

Phase boundary 1 � apðmÞ ¼ n � 1

m þ n � 1

� �n

m > 0 Eqs. (11) and (18)

Diffusion limited 1 � apðmÞ ¼ 2

2m þ 1

� �3

m > 0.5 Eqs. (14) and (21)

Nucleation and growth Integral �ln½1 � apðmÞ� ¼ m

n
m > 0 Eqs. (15) and (17)

Phase boundary 1 � apðmÞ ¼ n

m þ n

� �n

m > 0 Eqs. (18) and (20)

Diffusion limited 1 � apðmÞ ¼ 3

2m þ 3

� �3

m > 0 Eqs. (21), (23)

Table 3

The tp(T, m) values (in minutes) for model system S1 curves

simulated for a different temperatures (using Ea ¼ 200 kJ mol�1,

n ¼ 2, k0 ¼ 1:31 	 108 min�1) (m ¼ 0) and the appropriate F
curves (m ¼ 1–3), and the activation energies calculated from

Eq. (27)

m T (8C) Ea (kJ mol�1)

800 805 810 815 820

0 29.5 26.5 24.0 21.5 19.5 202 
 2

1 41.5 37.5 34.0 30.5 27.5 201 
 2

2 51.0 46.0 41.5 37.5 34.0 198 
 2

3 59.0 53.0 48.0 43.5 39.0 200 
 2
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In the same way as the functions, the experimentally

obtained curves, supposed to obey particular function,

could be transformed. Such procedure could be easily

carried out by any spreadsheet computer application.

The procedure is no more complicated than the clas-

sical analysis of isothermal experiment data. For the

data analysis of some experimental methods, e.g.

DSC, it is even less complicated, since there is no

need for calculation of the volume transformed.

Method is especially valuable for the activation energy

calculation, since process rate-determining step does

not have to be known.

From theoretical consideration and from results of

analysis of the model systems, the relationships

between the values determined by extremes of F
functions and various kinetic parameters have been

established. Also, the equation enabling calculation of

kinetic parameters from extreme values have been

performed. As shown in Table 6, new relations could

be obtained, where instead of tp, ap parameter is

included.

4. Conclusions

Functions representing different kinetic models for

isothermal conditions, were transformed in order to

create new functions with properties that enable dif-

ferent approach to kinetic analysis. The transforma-

tion is performed by multiplying the function that

represent the kinetic model, F, with assisting function,

j. The selection of the function j depends on the type

of experimental results and has to be chosen in such

manner that transformed curve, F, has a maximum.

Function F is not a kinetic function. It is not

characterized by integral or differential form, and

does not appear as a result of process analysis. But

this function involves all the kinetic parameters char-

acteristic for F function, and interconnects them as

demanded by the assisting function j and its para-

meters (e.g. m).

By introducing of F functions the great number of

relations between kinetic parameters and parameters

of j function is obtained. This increased number of

relations enables enhanced reliability in determination

of kinetic parameters.

It is worth noting that although only the curve

extremes are employed in discerning of the kinetic

parameters, the major part of a curve is represented,

since the different parts of the curve are employed in

the calculation of the extremes.

There is no obstacle for extending the application of

the described procedure to cases where more complex

F or j functions have to be employed, or to non-

isothermal kinetic functions. The application of the

procedure is not even limited on solid-state kinetic

functions; it can also be used in the analysis of other

types of processes.
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Appendix A

The basic function

F ¼ tmF

in differential form reads as

dF
dt

¼ mtm�1F þ tmF0 ¼ 0

which gives

tm�1ðmF þ tF0Þ ¼ 0

or for t > 0

mF þ tF0 ¼ 0

and finally

mFðtpðmÞÞ ¼ �tpðmÞF0ðtpðmÞÞ

Appendix B

Šestak and Bergren [20] proposed an empirical

kinetic model in the form:

f ðaÞ ¼ arð1 � aÞp½�lnð1 � aÞ�q

after eliminating the first exponential term [21]

F ¼ ð1 � aÞp½�ln ð1 � aÞ�q
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Appendix C

The basic function

F ¼ amH
p
1ðaÞH

q
2ðaÞ

in differential form reads as

dF
da

¼ mam�1H
p
1ðaÞH

q
2ðaÞ þ ampH

p�1
1 ðaÞH0

1ðaÞH
q
2ðaÞ

þ amH
p
1ðaÞqH

q�1
2 ðaÞH0

2ðaÞ ¼ 0

or

dF
da

¼ am�1H
p�1
1 ðaÞHq�1

2 ðaÞ½mH1ðaÞH2ðaÞ

þ apH0
1ðaÞH2ðaÞ þ aqH1ðaÞH0

2ðaÞ� ¼ 0

which gives

mH1ðaÞH2ðaÞ ¼ �p½aH0
1ðaÞH2ðaÞ� � q½aH1ðaÞH0

2ðaÞ�
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[18] T. Kemeny, J. Šestak, Thermochim. Acta 110 (1987) 113.
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